Results of oceanographic analyses conducted under JARPA and possible evidence of environmental changes

Tomowo Watanabe¹, Takashi Yabuki², Toshio Suga², Kimio Hanawa², Koji Matsuoka³ and Hiroshi Kiwada³

¹ National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan

² Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan

³ Institute of Cetacean Research, 4-5 Toyomi, Chuo-ku, Tokyo 104-0055, Japan

ABSTRACT

Oceanographic observation data obtained by JARPA were analyzed to clarify physical oceanographic conditions in the JARPA area as a basis for understanding of habitat environment of whales. Accumulated XBT, XCTD and CTD data were stored in the HydroBase format and utilized to describe the oceanographic feature of JARPA area. The Southern Boundary (SB) of the Antarctic Circumpolar Current was clearly observed as a 0°C temperature contour line on the 27.6 σ_{θ} isopycnal surface. It is evident that the position of SB is controlled by major features of bottom topography such as the Kerguelen Plateau the Pacific-Antarctic ridge. The analyses presented several evidences for year-to-year variations in oceanographic conditions, including large year-to-year meridional shift of the SB found east of the Kerguelen plateau. The JARPA data also provided a new evidence of Antarctic Bottom Water formation in the Prydz Bay region. Comparison between the JARPA data and satellite-derived Chlorophyll distribution indicates that the intensity of the wintertime cooling determines the primary productivity south of SB in the following seasons. These data provide to investigate the Antarctic marine ecosystem including the relation between environmental condition of the sea and distribution of whales.

INTRODUCTION

Oceanographic observation has been included in JARPA and many data were corrected from JARPA area (Pacific and Indian sector of the Southern Ocean, poleward of 60S) for 17 years period 1987/88-2003/04. The purpose of the oceanographic observations is to obtain fundamental information of the ecosystem in the JARPA area and to investigate the relationship between the oceanographic conditions and whales.

The repeat observation conducted in the JARPA is also important from the oceanographical view point as the southern ocean plays key roles in the global thermohaline circulation. The North Atlantic Deep Water (NADW) formed in the northern North Atlantic flows into the Southern Ocean and lifted up to subsurface depth. The Antarctic Bottom Water (AABW) which occupies the bottom layer of the world ocean is formed in the coastal area of the Antarctic continent by mixing cold and dense shelf water with the NADW (Schmitz, 1996).

The Antarctic Circumpolar Currents (ACC) is major feature of the Southern Ocean and the spatial water mass distribution of the area is characterized by the zonal structure reach to the deeper layer. The oceanographic conditions of the JARPA area are also under the strong influence of the ACC. The Southern Boundary (SB) of the ACC is thought to be most important oceanographic component of the JARPA area. The upwelling of the NADW around the SB is enriching the nutrient in the

upper layer and is sustaining the rich ecosystem in the Southern Ocean.

Matsuoka et al. (2003) investigated the relationship between oceanographic fronts and distribution of the large whale species. They showed that the humpback whale gathered in the sea area around SB east of the Kerguelen Plateau in Area IV. Nicol et al. (2000) indicated the results of the BROKE (baseline research on oceanography, krill and the environment) in the area from 80E-150E conducted in 1996. They showed that the ecosystem in the region south of the SB of the ACC is rich and the SB determines the spatial structure.

As a first step of the oceanographic analysis of JARPA data from the view point of ecosystem, we made climatological pictures of the various physical parameters by using the JARPA data to investigate the large scale feature of the oceanographic structure. The information about the year-to-year variability is also provided by using the satellite observed data.

DATA

Vertical oceanographic structures were observed by using XBT (eXpendable Bathy Thermograph), CTD (Conductivity-Temperature-Depth profiler) and XCTD (eXpendable CTD). XBT was mainly used in the first stage of JARPA (87/88-96/97). XCTD is a newly developed oceanographic instrument in the late 1990's. We can get temperature and salinity profile for the depth range from 0m to 1000m by XCTD. In the Southern Ocean, salinity is important factor for the dynamics of ocean currents. So XCTD was promptly introduced instead of XBT in the second stage of JARPA (97/98-presents). CTD was also introduced after 98/99 JARPA. These data were combined and stored in the HydroBase format (Curry, 1996). Figure 1 shows observation stations. In our analysis, we mainly used the data obtained after 97/98 JARPA when salinity data available, so the water mass analysis is possible.

RESULTS

Large scale oceanographic conditions of JARPA area

By using all the temperature profile data, the temperature section along the Date Line is constructed. The mean temperature section and standard deviation section are shown in Figures 2 and 3, respectively. The dichothermal structure (temperature minimum) is observed in the upper layer of poleward region of 64S. This structure is remainder of the mixing of upper water in former winter. The SB of the ACC coincides with the northern limit of 0°C water. In the subsurface layer, relatively warm deep water exists under the dichothermal layer indicating the upwelling of the upper Circumpolar Deep Water (UCDW). Large standard deviation found in the surface layer around 63S reflects the year-to-year variation of the SB.

Front systems of the ACC are important for the marine ecology of the Southern Ocean. The SB is a southernmost front of the ACC and is recognized as an important oceanographic feature for large whale in the JARPA area. To detect the SB in the JARPA area, we construct the spatial temperature and salinity map on $27.6\sigma_{\theta}$ isopycnal surface. Frontal structure is clearly observed along the 0°C contour on temperature map (Fig. 4). The contour line shows the southern limit of UCDW and indicates the southern boundary of ACC (Orsi et al., 1995). The path of the SB closely follows the bottom topography (Fig. 5). The ACC strongly influenced by the bottom topography deep structure of the ACC.

Detailed structure of the SB in Area V and IV

Detailed oceanographic structure in Area V was investigated by JARPA 01/02 data set. Figure 6 shows the observation line and the position of the SB as defined the 0°C on $27.6\sigma_{\theta}$ isopycnal surface. The SB approaches the continent west the 150E and is left offshore east the 150E and it clear that the SB runs along the Pacific-Antarctic ridge in the east of 160E.

The SB of ACC in the Area IV was detected by using the JARPA 97/98, 99/00, 01/02 oceanographic observation data (Fig. 7). The position of the SB is defined as the positions of 0°C temperature contour on $27.6\sigma_{\theta}$ isopycnal surface. The meandering path east of the Kerguelen Plateau was observed in all three years. The year-to-year variation of the meridional position of the SB was obviously indicated. The dichothermal structure developed in the south of the SB, and its temperature and thickness change each year.

The position of SB detected above was compared with the dynamic topography at the sea surface relative to 2000dbar derived from satellite altimeter data and hydrographic climatology (Fig. 8). It was shown that the contour line of 0.82m is good indicator for the SB position.

Oceanographic structure of the Prydz Bay region

While the major formation sites of AABW are located in the Weddell Sea and the Ross Sea, recent studies suggested a few other sites including the Prydz Bay region (Orsi et al. 1999). The hydrographic data in the Prydz Bay region during the JARPA 99/00 and 01/02 were analyzed to seek an evidence for the AABW formation (Fig. 9). One of the essential elements for the AABW formation is high salinity shelf water (HSSW), which is cold and saline (S>34.6) shelf water. HSSW was observed near the shelf break in the Bay at the station JARPA99/00-113 (Fig. 10), which is a clear additional evidence for the AABW formation in the Prydz Bay region.

Year-to-year variation of Chlorophyll fields in the JARPA area derived from the satellite observation

Chlorophyll distribution observed by satellite ocean color sensor SeaWiFS was compared with the oceanographic conditions in Area IV. The chlorophyll-a concentration was low in January 1998 (Fig. 11). The hydrographic section shows dichothermal water was weak during JARPA 97/98, indicating weak wintertime cooling in the previous winter (Fig. 12). On the other hand, the chlorophyll-a concentration was high in January 2000 (Fig. 13). The dichothermal water was intense during JARPA 99/00, indicating intense wintertime cooling in the previous winter (Fig. 14). These observations suggest that the wintertime cooling affects the primary productivity in the following seasons. The chlorophyll-a concentration in January 2002 was high, which is consistent with the intense dichothermal water (not shown). The high concentration area was confined near the coast, which is possibly related to the SB approaching the coast during JARPA 01/02 (not shown).

Year-to-year variation of SST in the JARPA area

Time series of SST along the circle of latitude at 62S were analyzed. Year-to-year variations of March SST in Area IV are characterized by warming after 2001 (Fig. 15). No significant long-term trend is observed for the period 1982-2004. SST was extraordinary high in 1988 and low in 2000. Year-to-year variation of March SST in Area V is large (Fig. 16). Warm SST in the eastern part of Area V is related to El Nino 1982/83, 1986/87, 1991-93 and 1997/98 (Kwok and Comiso, 2002).

SUMMARY AND REMARKS

Basic oceanographic structure of JARPA area was realized by the JARPA oceanographic data. The position of the SB of ACC is mainly determined by bottom topography such as the Kerguelen Plateau the Pacific-Antarctic ridge. The JARPA area is also characterized as upwelling area of Circumpolar Deep Water, which provides nutrients to support high primary productivity. An evidence for the AABW formation in the Prydz Bay region was found. Large inter-annual variations in the meridional position of SB of ACC in the east of the Kerguelen plateau are revealed. By using the chlorophyll data, we made several map and compare the chlorophyll distribution with

the oceanographic structure in area IV. In the area south of the SB, low chlorophyll concentration in 97/98 season was related to weak dichothermal structure and relatively high chlorophyll concentration in 99/00 and 01/02 season were related to colder and thick dichothermal structure. The relationship suggested that wintertime mixing of surface layer affect the production in the summer season. Influence of El Nino on SST in Area V-VI is also suggested.

The most important aspect of JARPA is that observation is repeated in the same area in the same season. Useful marine environment information is beginning to be extracted from JARPA data. We regard JARPA as one of the important monitoring platform of the marine environment in the Southern Ocean. Sufficient consideration based on the experience of JARPA 1987/88-2004/05 is needed to get an efficient future observation plan for the JARPA area. It is also important to make JARPA oceanographic observation link with the monitoring by other in-situ observation projects (Argo, IPY, etc.) and satellite observations. The fundamental information about physical oceanographic environment in the JARPA area has been accumulated for 17 years, which will be fully utilized to investigate the relation among physical environment, biochemical environment and habitat environment of the whale in the future stage of JARPA.

ACKNOWLEDGMENT

The authors are grateful to the captains, crew, researchers and other staff of the JARPA cruises for their support for the hydrographic observations.

REFERENCES

Curry, R. G. 1996. HydroBase – A Database of Hydrographic Stations and Tools for Climatological Analysis, Woods Hole Oceanogr. Inst. Tech. Rept., WHOI-96-01, 44pp.

Kwok, R. and Comiso, J. C. 2002. Southern Ocean climate and sea ice anomalies associated with the Southern Oscillation. J. Climate, 15, 487-501.

Matsuoka K., Watanabe, T., Ichii, T., Shimada, H. and Nishiwaki, S. 2003. Large whale distributions (south of 60S, 35 E-130 E) in relation to the southern boundary of the ACC. Antarctic Biology in a Global Context, pp26-30. Edited by A. H. L. Huiske, W. W. C. Gieskes, J. Rozema, R. M. L. Schrno, S, M, van der Vies & W. J. Wolff. Backhuys Publishers, Leiden, The Netherlands.

Nicol S., T. Pauly, Bindof, N. L., Wright, S., Thiele, D., Hosie, G. W., Strutton, P. G. and Woehler, E. 2000. Ocean circulation off east Antarctica affects ecosystem structure and sea-ice extent. Nature, 406: 504-507.

Orsi, A. H., Whitworth III, T.and Nowlin Jr., W. D. 1995. On the meridional extent and fronts of the Antarctic Circumpolar Current, Deep Sea Res., Part I, 42, 641-673.

Orsi, A. H., Johnson, G. C. and Bullister, J. L. 1999. Circulation, mixing, and production of Antarctic Bottom Water. Prog. in Oceanogr., 43, 55-109.

Schmitz, W. J.,1996, On the World Ocean Circulation : Volume II. The Pacific and Indian Oceans/ A Global Update. Woods Hole Oceanographic Institution, Technical Report WHOI-96-08, 241pp.

JA/J05/JR15

Fig. 1. Oceanographic observation in the JARPA.

Fig. 2. Long-term mean meridional temperature section along the date line.

Fig. 3. Standard deviation associated with the long-term mean meridional temperature section along the date line shown in Fig. 1.

Fig. 4. Temperature (top panel) and salinity (bottom panel) distribution on $27.6\sigma_{\theta}$ isopycnal surface.

Fig. 5. Relationship between SB of ACC and bottom topography. Red curves indicate temperature contours on $27.6\sigma_{\theta}$ isopycnal surface. Thick line is 0°C contour. Black curves are 3000m depth contour.

Fig. 6. SB of ACC detected by the XCTD and CTD data of JARPA-00/01 Cruise.

Fig. 7. SB of ACC detected by the XCTD and CTD data of JARPA-97/98 (top), JARPA-99/00 (middle) and JARPA-01/02 (bottom) cruises.

Fig. 8. Comparison with Sea surface height field by using the "Mean Sea Level Anomaly (MSLA)" data and mean field derived from WOA98.

Fig. 9. Observation points in the Prydz Bay region, 1999/00 and 2001/02 JARPA Cruise.

Fig. 10. XCTD sections in the Prydz Bay.

Fig.11. Distribution of Chl-a in January 1998.

Fig. 12. Temperature and Salinity composited section of area IV for 1997/98 JARPA.

JA/J05/JR15

Fig. 13. Distribution of Chl-a in January 2000.

Fig. 14. Temperature and Salinity composited section of area IV for 1999/2000 JARPA.

Fig. 15. Year-to-year variations of March SST for area IV.

Fig. 16. Year-to-year variations of March SST for area V.